Market Prediction as a task for AGI Agents

James Oswald

The 15th International Conference on Artificial General Intelligence 8/20/2022

Overview

This work investigates the utility of market prediction as a task for AGI agents due to its dual logical and statistical nature.

We propose a modified version of the market prediction task that can be played by all types of different agents beyond just statistical agents.

We propose a dataset inline with past benchmarks for our task, and benchmark multiple methods, including NARS on the task.

Precursors

Traditional Market Prediction Task

Market prediction can be phrased as a time series prediction task.

We learn a model f that at time t, can predict the asset price, p, at time, t+i, when given past prices and additional observations, x.

$$p_{t+i} = f(i, p_{t-k:t}, \mathbf{x})$$

Machine Learning for Stock Market Prediction

- Technical Data is inherently quantitative, and is essentially just the price histories of assets. As well as other computed indicators
- Fundamental Data is much more *qualitative* and includes:
 - Earnings reports
 - News about the asset
 - Social media mood
 - Posts about the asset on blocks and forms.

Figure from Mokhtari et al. (2021)

Statistical Method Results

Using an LSTM for predicting APPL Price with technical indicators. Mokhtari et al. (2021)

All shown results predict closing prices of next day with data from previous days

Predicting S & P 500 Price with technical indicators with a simple ANN. Sheta et al. (2015)

Metrics	LR	GNB	BNB	DT	RF	KNN	SVM	XGB	ANN
Precision	0.729	0.636	0.644	0.620	0.727	0.684	0.757	0.710	0.684
Recall	0.727	0.634	0.644	0.620	0.727	0.684	0.755	0.709	0.684
F1-score	0.726	0.632	0.644	0.620	0.727	0.684	0.755	0.709	0.684
Accuracy	0.727	0.634	0.644	0.620	0.727	0.684	0.755	0.709	0.684
AUC	0.73	0.63	0.64	0.62	0.73	0.68	0.76	0.71	0.68

Comparison of Statistical and ML Market forecasting methods with quantitative fundamental indicators. Mokhtari et al. (2021)

Shortcomings of Statistical & Connectionist Approaches

- Mokhtari et al. (2021) tested many ML methods and found that while the price of a stock at the end of the day can be predicted with ~65% accuracy when given both technical factors but find it is completely unable to generalize this even one day out.
- Qualitative fundamental data is difficult for machine learning methods to interpret and take advantage of without logic based reasoning capabilities.
- Explainability is a huge issue with all machine learning techniques, we would like human level insight into why a model believes an asset price will go up or down.

A Modified Market Prediction Task for AGI

Task

Given a set of n, (27 in our case) qualitative technical factors $\{f_1, ..., f_{27}\}$ and the price of the S & P 500, p, with a daily magnitude change m and direction d components over the course of 10 years. Create an agent **A** which takes these factors of the previous day (at time t) and maximizes its ability to predict the direction the S & P 500 moves the following day p_{t+1}^d

$$F_t = \{f_{1t}^m, f_{1t}^d, \cdots, f_{27t}^m, f_{27t}^d\}$$
$$A(p_t^d, p_t^m, F_t) = p_{t+1}^d$$

Qualitative Conversion

Problem at hand

- Different assets have wildly different price distributions.
- A 1% change in in one asset may be huge for one asset while just average for another.
- When representing the magnitude of daily change we want to ensure this distribution is reflected fairly.

A Solution, Z-Score bucketing

- Use past distribution of asset percent and current daily change to to compute "Significance" of the price movement with respect to that asset.
- Use Z-Score (Number of standard distributions away from the average) as a measure of significance.
- Bucket Z-score into a group with a label corresponding to magnitude.

Example Conversion

Apple Daily Stock Price:

DatePrice2012-01-30\$14.572012-01-31\$15.08

Percent Daily Change: (\$15.08-\$14.57)/\$14.57 = 3.5%

Standard Deviation for Apple = 1.8% Z-Score = (3.5%-0.1%)/1.8% = 1.89 Direction: +1 Magnitude: 2

If Z-Score is negative then the direction is set to -1, else, +1.

Magnitude is determined by bucketing Z-scores: Z-Score between [0,1) => 1 Z-Score between [1,2) => 2 Z-Score > 2 => 3

Our Data

Data Sources

- Daily values of 29 technical market factors over past 10 years across 5 groups:
 - 2 Commodities
 - 4 Currency Exchange Rates
 - 6 Global Stock Market Indexes
 - 7 Bond Yield Rates
 - 10 High Profile Stocks
- Selected factor groups were influenced by previous ML work which uses many of the same groups.

Commodities

The 2 commodities selected are:

- Daily Gold Prices sourced from the NASDAQ
 - Supposedly an indicator of public faith in market, however, this is contested (NBER)
- Daily WTI Crude Oil Prices sourced from the U.S. Energy Information Administration
 - Oil prices correlate with stock prices of companies involved in transportation and energy (EIA)

Currency Exchange Rates

Selected Daily Currency Exchange Rates all sourced from the Federal Reserve H.10

- GBP (British Pounds) to USD
- JPY (Japanese Yen) to USD
- CNY (Chinese Renminbi) to USD
- CAD (Canadian Dollars) to USD

There is a substantial body of literature on currency exchange rates impacting stock market prices (Cakan & Ejara)

Global Market Indexes

Daily closing prices of the following global market indexes

- S&P 500, sourced from the NASDAQ
 - Considered the best representation of the state of the US stock market
- Hang Seng Index, sourced from Yahoo Finance
 - Benchmark of the Hong Kong stock market
- CAC 40, sourced from Yahoo Finance
 - Benchmark of the French stock market
- FTSE 100, sourced from WSJ Markets
 - Benchmark of the British stock market
- DAX, sourced from Yahoo Finance
 - Benchmark of the German stock market

Bond Yield Rates

Moody's Daily Corporate Bond Yields sourced from FRED

- AAA ranked corporate bonds with maturities over 20 years
- BAA ranked corporate bonds with maturities over 20 years

Daily Treasury Bond Market Yields sourced from The Federal Reserve H.15

- 3-month maturity
- 6-month maturity
- 1 year maturity
- 5 year maturity
- 10 year maturity

Bond prices are well known to be inversely correlated with the stock prices.

Stocks

Daily closing prices of prominent stocks sourced from Yahoo Finance

Current top five S&P 500 stocks as of 3/27/22

- Apple
- Microsoft
- Amazon
- Google Class A
- Google Class C

Others:

- Exxon Mobil
- General Electric
- Proctor and Gamble
- Johnson and Johnson
- Berkshire Hathaway Class A

Data Preparation

Input data

Data comes in as CSV files in different formats

Date,Open,High,Low,Close,Adj Close,Volume

2012-01-30, 287.945709, 288.917053, 285.629395, 287.766388, 287.766388, 4678471 2012-01-31, 290.411469, 290.909607, 286.501129, 288.971863, 288.971863, 4300860 2012-02-01, 291.377838, 291.656799, 288.488678, 289.330505, 289.330505, 4658797 2012-02-02, 291.342987, 292.110107, 289.953186, 291.462524, 291.462524, 4847502 2012-02-03, 294.227173, 297.420197, 292.927032, 297.051575, 297.051575, 6360753 2012-02-06, 296.394043, 304.274506, 295.895905, 303.407745, 303.407745, 7386784 2012-02-07, 302.441376, 303.557190, 300.752716, 302.252075, 302.252075, 4199883 2012-02-08, 303.183594, 304.533539, 301.240875, 303.786346, 303.786346, 3686567 2012-02-09, 304.867279, 306.102661, 303.362915, 304.588318, 304.583818, 4546377 2012-02-10, 302.805023, 302.929355, 300.872253, 301.823700, 301.823700, 4667831 2012-02-13, 304.110107, 305.773895, 303.871002, 304.956940, 304.956940, 3646216 2012-02-14, 304.628174, 304.857330, 301.250824, 303.741516, 303.741516, 3620921 2012-02-15, 305.320587, 305.320587, 300.154938, 301.649353, 301.649353, 486988 2012-02-16, 300.284454, 303.268280, 297.748962, 302.127563, 302.127563, 5080773

1	Date,Close
	2012-01-30,3.77
	2012-01-31,3.72
	2012-02-01,3.80
	2012-02-02,3.79
	2012-02-03,3.93
	2012-02-06,3.87
	2012-02-07,3.92

FRED Corporate Bond Yield Data

"Series Description", "UNITED KINGDOM -- SPOT EXC "Unit:","Currency:_Per_GBP","Currency:_Per_USD", "Currency:","USD","CAD","CNY","JPY" "Unique Identifier: ","H10/H10/RXI\$US N.B.UK","H1 "Time Period","RXI\$US N.B.UK","RXI N.B.CA","RXI N 2012-01-02,ND,ND,ND,ND 2012-01-03, 1.5655, 1.0089, 6.2940, 76.6700 2012-01-04,1.5638,1.0134,6.2941,76.6800 2012-01-05,1.5480,1.0197,6.3013,77.1800 2012-01-06,1.5431,1.0231,6.3088,77.0600 2012-01-09, 1.5436, 1.0272, 6.3143, 76.8800 2012-01-10,1.5489,1.0161,6.3141,76.8400 2012-01-11,1.5325,1.0192,6.3149,76.9000 2012-01-12, 1.5325, 1.0197, 6.3177, 76.7600 2012-01-13,1.5301,1.0246,6.3065,76.9000 2012-01-16,ND,ND,ND,ND 2012-01-17, 1.5356, 1.0130, 6.3136, 76.8000

10 years of GOOGL market data from Yahoo Finance

Federal Reserve H.10 Currency Exchange Rates

Date,Close,Volume,Open,High,Low

03/28/2022,4575.52,--,4541.09,4575.65,4517.69 03/25/2022,4543.06,--,4522.91,4546.03,4501.07 03/24/2022,4520.16,--,4469.98,4520.58,4465.17 03/23/2022,4456.24,--,4493.1,4501.07,4455.81 03/22/2022,4511.61,--,4469.1,4522,4469.1 03/21/2022,4456.18 -- 4462,4,4481,75,4424,3

NASDAQ S&P 500 closing records

Dataset Processing Pipeline

Converting all input data files into single unified dataset for learning

- 1. Unique processing for each file source type into one big buffer with all data arranged by date
- 2. Clean the data by removing dates with no info (weekends and market holidays as well as other errors)
- 3. Transform the data from quantitative into qualitative via Z-score bucketing
- 4. Write unified dataset to a unique file

A Few Issues

• Benchmark train and test set have different distributions.

• Weekends and market holidays lead to gaps in the data.

Agents & Results

Benchmark Statistical & Connectionist Agents

- Multi Linear Regression Agent
 - Performs linear regression to find coefficients for factors in a linear function that predicts the direction.
- Multi Logistic Regression Agent
 - Same idea as multi-linear regression but with logistic regression over the high dimensional space.
- SVM Agent
 - Uses a support vector machine to predict direction movement from factors
- ANN Agent
 - Multilayer perceptron 1 hidden layer with 100 neurons
 - Relu activation

Baseline Agent Results

Agent	Train Accuracy	Test Accuracy
Multi Linear Regression	65.03%	<u>64.81%</u>
Multi Logistic Regression	65.17%	63.58%
SVM	55.09%	51.23%
ANN	65.45%	64.19%

NARS Agents

- Sequence agent (Produces an action (direction guess) from a sequence of features)
- Inheritance Agent (Feature products *are* directions)
- Logical Agent (Feature products *logically entail* directions)

<pre>//NARS Inheritance Agent //Input <(f1 x f2 x x f27)> S&P500_Up>. : : //Test Query <(f1 x f2 x x f27)> ?S&P500_Direction>?</pre>	<pre>//NARS Sequence Ag //Inputs <f1>. <f2>.</f2></f1></pre>	ent //Queries <f1>. <f2>.</f2></f1>	
<pre>//NARS Logical Agent //Input <(f1 x f2 x x f27) ==> S&P500_Up>. : : //Test Query <(f1 x f2 x x f27) ==> ?S&P500_Direction>?</pre>	 <f27>. <^S&P500_Up>. <predict>.</predict></f27>	<pre> <f27>. //goal <predict>. //Recive output actions</predict></f27></pre>	

NARS Agent Results

Agent	Train Accuracy	Test Accuracy
NARS Sequence	Negligible	Negligible
NARS Inheritance	56.17%	54.39%
NARS Logical	62.76%	60.49%

Not better than most baselines... So why use it?

Summary

Method	Train	Test	
Random Baseline	55.23%	49.3%	
MLR	65.03%	64.81%	
MLogR	65.17%	63.58%	_
SVC	55.09%	51.23%	
ANN	65.45%	64.19%	
NARS	62.76%	60.49%	

Table 2: Results of all of our agents

Explainability

We can query NARS about its internal beliefs, while we can ask: "What direction will the S&P 500 move in based on these factors f" $<(f1 x f2 x ... x f27) ==> ?S&P500_Direction>?$

We can just as easily ask: "What factors most cause the S&P 500 to go up?" <?Factors ==> S&P500_Up>? "What factors most cause the S&P 500 to go down?" <?Factors ==> S&P500 Down>?

Answer: <(FTSE_Direction_1 * (SPX_Direction_1 * (GOOG_Direction_1 * (HSI_Direction_1 * FCHI_Direction_1)))) ==> SPXp1_0>. c
reationTime=2151 Truth: frequency=1.000000, confidence=0.990000
Answer: <(FTSE_Direction_0 * (SPX_Direction_0 * (GOOG_Direction_0 * (HSI_Direction_0 * FCHI_Direction_0)))) ==> SPXp1_1>. c
reationTime=2141 Truth: frequency=1.000000, confidence=0.990000

Generality: Procrastinating NARS Agent

The agent first trains on and masters how to play pong, hits 85% of the balls thrown at it.

It then learns how to predict the S & P 500 price with 56% accuracy.

Then goes back to learning to play pong getting up to 88% accuracy.

End